Energy Analysis of a Novel Turbo-Compound System for Mild Hybridization of a Gasoline Engine

Author:

Lombardi Simone1ORCID,Ricci Federico2ORCID,Martinelli Roberto2,Tribioli Laura1ORCID,Grimaldi Carlo Nazareno2ORCID,Bella Gino1

Affiliation:

1. Department of Industrial Engineering, University of Rome Niccolò Cusano, 00166 Rome, Italy

2. Department of Engineering, University of Perugia, 06123 Perugia, Italy

Abstract

Efficient and low-polluting mobility is a major demand in all countries. Hybrid electric vehicles have already shown to be suitable to respond to this need, being a reliable alternative to conventional cars, at least in urban environments. Nevertheless, such vehicles present a yet unexplored potential. In this paper, we will investigate how the powertrain efficiency may possibly benefit, in an integrated drivetrain for a hybrid electric vehicle, based on a turbocharged gasoline engine, of an innovative supercharging system. The compressor and turbine will be mechanically decoupled so as to independently optimize their operation, avoiding turbo lag and maximizing energy recovery by completely eliminating the waste-gate valve. This, in turns, requires changing the turbine so as to have a flattest possible efficiency/load curve. Therefore, an ad-hoc designed turbine will be implemented in the decoupled configuration, to be used to drive an electrical generator and produce electrical energy for charging the battery. This study presents a preliminary assessment of the potential of a turbo-compounded system for a 1L turbocharged gasoline engine for a small city car. To this aim, a one-dimensional dynamic model of the engine has been built in GT-Suite and has been calibrated and validated by means of experimental data obtained on a dynamometer, both in steady state and dynamic conditions. In particular, the model has been calibrated by means of experimental data obtained in stationary conditions and its robustness has then been verified through experimental data obtained under transient conditions. The model also includes data retrieved from the characterization of the existing turbine and compressor, while a new performance map for the turbine has been designed to better exploit the potential of the components’ decoupling. Results include the estimation of energy recovery potential of such a solution. Under the implementation of a straightforward control strategy, which runs both compressor and turbine at the same speed, the system is able to achieve a 60.57% increase in energy recovered from the exhaust gasses in the turbine. Afterwards, an attempt was made to limit the minimum turbine speed to 45000 rpm and simultaneously decrease the instantaneous speed by 3000 rpm compared to the compressor, attaining a further increase of 1.7% in the energy recovered by the turbine.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference25 articles.

1. Air emissions impacts of modal diversion patterns induced by one-way car sharing: A case study from the city of Turin;Chicco;Transp. Res. Part D Transp. Environ.,2021

2. Electric and hybrid car use in a free-floating carsharing system;Wielinski;Int. J. Sustain. Transp.,2017

3. The impact of carsharing on car ownership in German cities;Giesel;Transp. Res. Procedia,2016

4. Adhikari, M., Ghimire, L.P., Kim, Y., Aryal, P., and Khadka, S.B. (2020). Identification and Analysis of Barriers against Electric Vehicle Use. Sustainability, 12.

5. Internal combustion engine to electric vehicle retrofitting: Potential customer’s needs, public perception and business model implications;Hoeft;Transp. Res. Interdiscip. Perspect.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3