Errors Control of Constraint Violation in Dynamical Simulation for Constrained Mechanical Systems

Author:

Lyu Guizhi12,Liu Rong3

Affiliation:

1. Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China;

2. School of Mechanical and Electrical Engineering, Heze University, Heze 274015, China e-mail:

3. Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China e-mail:

Abstract

Function realization of mechanical systems can be considered as a series of constrained motions with the governing equations of mechanical systems constructed as the dynamic equations at the acceleration level. In the process of solving the dynamic equation, small numerical errors may appear on each integration step, and the errors accumulated might result in constraint violation, leading to difficulties in satisfying constraint at the velocity level and position level. Currently, constraint violation errors stabilization can be implemented through correcting acceleration or velocity equation; however, it is difficult to have an accurate control of the violation error threshold with these methods. On the basis of constraint direct correction method, this paper provides a control method of constraint violation errors, which can limit the constraint violation errors within a specific threshold range required by specific numerical simulation accuracy for the mechanical system. A dynamic model of a three-dimensional (3D) RRR (R, rotating) manipulator is constructed, followed by the implementation of dynamic simulation based on Udwadia–Kalaba method. A comparison between the previous methods and the current one is then made to analyze the control of the constraint violation errors in simulations, and the results show that the proposed method is effective in reducing violation errors to a specified range.

Funder

Department of Education of Shandong Province

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Reference35 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3