A framework for establishing constraint Jacobian matrices of planar rigid-flexible-multibody systems

Author:

Zhang Lina,Rui Xiaoting,Zhang Jianshu,Wang Guoping,Gu Junjie,Zhang Xizhe

Abstract

<abstract> <p>Constraint violation correction is an important research topic in solving multibody system dynamics. For a multibody system dynamics method which derives acceleration equations in a recursive manner and avoids overall dynamics equations, a fast and accurate solution to the violation problem is paramount. The direct correction method is favored due to its simplicity, high accuracy and low computational cost. This method directly supplements the constraint equations and performs corrections, making it an effective solution for addressing violation problems. However, calculating the significant Jacobian matrices for this method using dynamics equations can be challenging, especially for complex multibody systems. This paper presents a programmatic framework for deriving Jacobian matrices of planar rigid-flexible-multibody systems in a simple semi-analytic form along two paths separated by a secondary joint. The approach is verified by comparing constraint violation errors with and without the constraint violation correction in numerical examples. Moreover, the proposed method's computational speed is compared with that of the direct differential solution, verifying its efficiency. The straightforward, highly programmable and universal approach provides a new idea for programming large-scale dynamics software and extends the application of dynamics methods focused on deriving acceleration equations.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

Reference47 articles.

1. F. M. Amirouche, Computational methods in multibody dynamics, Englewood Cliffs, NJ: Prentice-Hall, 1992.

2. J. G. De Jalon, E. Bayo, Kinematic and dynamic simulation of multibody systems: The real-time challenge, Springer, 2012. https://doi.org/10.1007/978-1-4612-2600-0

3. W. Jens, Dynamics of systems of rigid bodies, Berlin: Springer, 2013. https://doi.org/10.1007/978-3-322-90942-8

4. Y. Liu, Z. Pan, X. Ge, Dynamics of multibody systems, Beijing: Higher Education Press, 2014.

5. P. E. Nikravesh, Computer-aided analysis of mechanical systems, Upper Saddle River: Prentice-Hall, 1988.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3