An Accurate and Efficient Approach to Three-Dimensional Geometric Modeling of Undeformed Chips for the Geometric and the Physical Simulations of Three-Axis Milling of Complex Parts

Author:

Chang Zhiyong1,Chen Zezhong C.23

Affiliation:

1. Department of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, China e-mail:

2. Department of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, China;

3. Department of Mechanical and Industrial Engineering, Concordia University, Montreal, QC H3G 1M8, Canada e-mail:

Abstract

To pursue high-performance computer numerical control (CNC) milling of complex parts, it is crucial to simulate their machining process geometrically and physically with high fidelity beforehand. The geometric simulation is to construct three-dimensional (3D) models of the finished parts and to compute geometric deviation between the models and the part designs, in order to verify the planned tool paths. The physical simulation is to build undeformed chips geometric models and in-process workpiece models and to compute instantaneous cutting forces, in order to optimize the machining parameters. Therefore, it is essential to accurately and efficiently model undeformed chips geometry in machining complex geometric parts. Unfortunately, this work is quite challenging, and no well-established method for this work is available. To address this problem, our work proposes an accurate and effective approach to 3D geometric modeling of undeformed chips geometry in three-axis milling of complex parts. The outstanding feature of this approach is that undeformed chip models and in-process workpiece models can be effectively constructed. This approach lays a theoretical foundation for the geometric and the physical simulations of three-axis milling. It advances the technique of machining simulation and promotes high-performance machining of complex parts.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference32 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3