An Accurate Method for Determining Cutter-Workpiece Engagements in Five-Axis Milling With a General Tool Considering Cutter Runout

Author:

Li Zhou-Long1,Zhu Li-Min1

Affiliation:

1. State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China e-mail:

Abstract

Cutter runout is universal and inevitable in milling process and has a direct impact on the shape of the in-process geometry. However, most of the works on the cutter-workpiece engagement (CWE) extraction neglect the cutter runout impact, which will result in a loss of precision. In this paper, an accurate method is presented to obtain CWE boundaries in five-axis milling with a general tool integrating the cutter runout impact. First, each flute's rotary surface is analytically derived. Then, by intersecting the section circle corresponding to the current flute with each of the rotary surface formed by previous flutes, a set of candidate feasible contact arcs (CFCAs) are obtained, and the valid feasible contact arc (VFCA) is defined as the common intersection of these CFCAs. Next, by intersecting the VFCA with the workpiece surfaces, the partial arc which locates inside the workpiece volume is extracted as the engagement arc. Finally, the CWE map is plotted by mapping a set of engagement arcs to a 2D space. To validate the proposed method, the CWE maps with/without integrating the cutter runout impact in five-axis milling of an axial compressor blisk are extracted and compared. The results reveal that the shape of CWE boundaries is changed a lot owing to the cutter runout impact. A cutting force comparison experiment has been carried out to show that the proposed method will lead to higher prediction accuracy especially in the finish milling process with low immersion angle.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3