Scalable Fully Bayesian Gaussian Process Modeling and Calibration With Adaptive Sequential Monte Carlo for Industrial Applications

Author:

Pandita Piyush1,Tsilifis Panagiotis1,Ghosh Sayan1,Wang Liping1

Affiliation:

1. Probabilistic Design & Optimization Group, GE Research, Niskayuna, NY 12309

Abstract

Abstract Gaussian process (GP) regression or kriging has been extensively applied in the engineering literature for the purposes of building a cheap-to-evaluate surrogate, within the contexts of multi-fidelity modeling, model calibration, and design optimization. With the ongoing automation of manufacturing and industrial practices as a part of Industry 4.0, there has been a greater need for advancing GP regression techniques to handle challenges such as high input dimensionality, data paucity or big data problems, these consist primarily of proposing efficient design of experiments, optimal data acquisition strategies, sparsifying covariance kernels, and other mathematical tricks. In this work, our attention is focused on the challenges of efficiently training a GP model, which, to the authors opinion, has attracted very little attention and is to-date poorly addressed. The performance of widely used training approaches such as maximum likelihood estimation and Markov Chain Monte Carlo (MCMC) sampling can deteriorate significantly in high-dimensional and big data problems and can lead to cost deficient implementations of critical importance to many industrial applications. Here, we compare an Adaptive Sequential Monte Carlo (ASMC) sampling algorithm to classic MCMC sampling strategies and we demonstrate the effectiveness of our implementation on several mathematical problems and challenging industry applications of varying complexity. The computational time savings of the ASMC approach manifest in large-scale problems helping us to push the boundaries of applicability and scalability of GPs for model calibration in various domains of the industry, including but not limited to design automation, design engineering, smart manufacturing, predictive maintenance, and supply chain manufacturing.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3