Radiant Thermal Test System for Turbine Blades Using a Novel Pattern Search Algorithm

Author:

Jiang Haonan1ORCID,Jin Xiaochao1,Liu Linchuan1,Ji Xinkuo1,Fan Xueling1

Affiliation:

1. State Key Laboratory for Strength and Vibration of Mechanical Structures School Aerospace Engineering, Xi'an Jiao Tong University, 28 Xianning West Road, Xi'an, Shaanxi 710049, China

Abstract

Abstract We established and validated a radiant thermal test system using a miniaturized quartz lamp heating device designed with a novel search algorithm to meet aero-engine blade heating requirements. The device can perform rapid, high-temperature gradient tests on new-material aero-engine blades, which cannot be achieved through electromagnetic induction. The algorithm, derived from the Monte Carlo method (MCM) and pattern search, can solve the problems of the classical iterative search algorithm by searching lamp parameters and reducing the algorithm's time complexity. These searched power parameters enable the system's closed-loop control to achieve temperature gradients easily. The corresponding heating process was also simulated using commercial numerical analysis software, serving as a numerical validation for the algorithm-based system. The device could meet the thermal fatigue test requirements for the blade at six different temperature control points, including a maximum temperature exceeding 1150 K, a maximum temperature difference exceeding 160 K within 20 mm, and a heating rate exceeding 30 K/s. Thus, the device provides a promising technique for rapid, high-temperature heat treatment of complex small components, and the algorithm makes designing miniaturized quartz lamp heating devices more accessible and versatile for small components.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3