Novel Test Facility for Investigation of the Impact of Thermally Induced Stress Gradients on Fatigue Life of Cooled Gas Turbine Components

Author:

Thiele Marcus1,Gampe Uwe1,Fischer Kathrin A.2

Affiliation:

1. Institute of Power Engineering, Chair of Thermal Power Machinery and Plants, Technische Universität Dresden, Dresden 01062, Germany e-mail:

2. Siemens, Berlin AG 10553, Germany e-mail:

Abstract

A novel test facility has been designed and setup for the investigation of the influence of stationary temperature, and thus thermally induced stress gradients with respect to the damage evolution of cooled gas turbine components. Thermally induced stress gradients differ from geometrically induced stress gradients. From the point of view of stress mechanics, they are independent from external loads. From the perspective of material mechanics, their impact on service life is influenced by locally different material properties and strength. However, the impact of thermally induced stress gradients on the cyclic life of high loaded, cooled components is not precisely known. In order to increase knowledge surrounding these mechanisms, a research project was launched. To achieve high temperature gradients and extended mechanical stress gradients, large heat fluxes are required. The authors developed a test bench with a unique radiant heating to achieve very high heat fluxes of q˙ ≥ 1.6 MW/m2 on cylindrical specimen. Special emphasis has been placed on homogenous temperature and loading conditions in order to achieve valid test results comparable to standard low-cycle or thermo-mechanical fatigue tests. Different test concepts of the literature were reviewed and the superior performance of the new test rig concept was demonstrated. The austenitic stainless steel 316 L was chosen as the model material for commissioning and validation of the test facility. The investigation of thermally induced stress gradients and, based on this analysis, low-cycle fatigue (LCF) tests with superimposed temperature gradients were conducted. Linear elastic finite element studies were performed to calculate the local stress–strain field and the service life of the test specimens. The test results show a considerable influence of the temperature gradient on the LCF life of the investigated material. Both the temperature variation over the specimen wall and thermally induced stresses (TIS) are stated to be the main drivers for the change in LCF life. The test results increase the understanding of fatigue damage mechanisms under local unsteady conditions and can serve as a basis for improved lifetime calculation methods.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference33 articles.

1. TMF-Rissverhalten.Rissverhalten Unter Anisothermen Beanspruchungsbedingungen—Berechn-Ungsverfahren Für Nickelbasislegierungen

2. Experimentelles Verfahren zur Charakterisierung des einachsigen Ermüdungsverhaltens auf Basis miniaturisierter Prüfkörper und Anwendung auf Hochtemperatur-Legierungen der Energietechnik,2017

3. Multiaxial Thermo‐Mechanical Fatigue on Material Systems for Gas Turbines;Materialwiss. Werkstofftech.,2007

4. Fatigue Cracks in a Thermal Barrier Coating System on a Superalloy in Multiaxial Thermomechanical Testing;Int. J. Fatigue,2008

5. Damage Mechanisms and Lifetime Behavior of Plasma Sprayed Thermal Barrier Coating Systems for Gas Turbines—Part I: Experiments;Surf. Coat. Technol.,2008

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3