A Simplified Thermal Mechanical Fatigue (TMF) Test Method

Author:

Warren J. R.1,Cowles B. A.1

Affiliation:

1. United Technologies, Pratt & Whitney Group, Engineering Division—South, West Palm Beach, FL 33402

Abstract

The thermal fatigue environment of gas turbine engine airfoils is severe and is often a life-limiting mode of failure. Alloy and coating system evaluation and accurate service life predictions for advanced turbine blades and vanes are dependent upon realistic laboratory simulation of the engine service environment. Engine conditions are best simulated in the laboratory by mechanical testing capable of imposing simultaneous, independently controlled temperature and strain cycles, or thermal mechanical fatigue (TMF) tests. Historically, TMF tests are expensive and usually require computer-controlled laboratory equipment. Consequently the cost of TMF testing has been prohibitively expensive for airfoil material and coating system evaluation. A simplified, low-cost TMF test method has been developed which is useful for alloy/coating system research and screening. This method, referred to as “load-adjusted TMF” (LATMF), uses load and temperature as the primary test control parameters. Test results using the simplified TMF test method show good correlation (within a factor of two) with the full computer-automated strain control TMF test results.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Radiant Thermal Test System for Turbine Blades Using a Novel Pattern Search Algorithm;Journal of Engineering for Gas Turbines and Power;2023-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3