Affiliation:
1. Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843 e-mail:
Abstract
Available computational models for many engineering design applications are both expensive and and of a black-box nature. This renders traditional optimization techniques difficult to apply, including gradient-based optimization and expensive heuristic approaches. For such situations, Bayesian global optimization approaches, that both explore and exploit a true function while building a metamodel of it, are applied. These methods often rely on a set of alternative candidate designs over which a querying policy is designed to search. For even modestly high-dimensional problems, such an alternative set approach can be computationally intractable, due to the reliance on excessive exploration of the design space. To overcome this, we have developed a framework for the optimization of expensive black-box models, which is based on active subspace exploitation and a two-step knowledge gradient policy. We demonstrate our approach on three benchmark problems and a practical aerostructural wing design problem, where our method performs well against traditional direct application of Bayesian global optimization techniques.
Funder
National Science Foundation
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献