Multi‐fidelity data fusion through parameter space reduction with applications to automotive engineering

Author:

Romor Francesco1,Tezzele Marco1ORCID,Mrosek Markus2,Othmer Carsten2,Rozza Gianluigi1ORCID

Affiliation:

1. Mathematics Area, mathLab SISSA, Scuola Internazionale Superiore di Studi Avanzati Trieste Italy

2. Innovation Center Europe Volkswagen AG Wolfsburg Germany

Abstract

AbstractMulti‐fidelity models are of great importance due to their capability of fusing information coming from different numerical simulations, surrogates, and sensors. We focus on the approximation of high‐dimensional scalar functions with low intrinsic dimensionality. By introducing a low dimensional bias we can fight the curse of dimensionality affecting these quantities of interest, especially for many‐query applications. We seek a gradient‐based reduction of the parameter space through linear active subspaces or a nonlinear transformation of the input space. Then we build a low‐fidelity response surface based on such reduction, thus enabling nonlinear autoregressive multi‐fidelity Gaussian process regression without the need of running new simulations with simplified physical models. This has a great potential in the data scarcity regime affecting many engineering applications. In this work we present a new multi‐fidelity approach that involves active subspaces and the nonlinear level‐set learning method, starting from the preliminary analysis previously conducted (Romor F, Tezzele M, Rozza G. Proceedings in Applied Mathematics & Mechanics. Wiley Online Library; 2021). The proposed framework is tested on two high‐dimensional benchmark functions, and on a more complex car aerodynamics problem. We show how a low intrinsic dimensionality bias can increase the accuracy of Gaussian process response surfaces.

Funder

European Research Council

Ministry of Public Education

Publisher

Wiley

Subject

Applied Mathematics,General Engineering,Numerical Analysis

Reference57 articles.

1. Adaptive Computation and Machine Learning Series;Williams CK,2006

2. KanagawaM HennigP SejdinovicD SriperumbudurBK.Gaussian processes and kernel methods: A review on connections and equivalences. arXiv preprint arXiv:1807.025822018.

3. Sparse spectrum Gaussian process regression;Lázaro‐Gredilla M;J Mach Learn Res,2010

4. When Gaussian Process Meets Big Data: A Review of Scalable GPs

5. Predicting the output from a complex computer code when fast approximations are available

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3