Exploring Multi-Fidelity Data in Materials Science: Challenges, Applications, and Optimized Learning Strategies

Author:

Wang Ziming1,Liu Xiaotong12ORCID,Chen Haotian1,Yang Tao12,He Yurong23

Affiliation:

1. School of Computer, Beijing Information Science and Technology University, Beijing 100101, China

2. Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Information Science and Technology University, Beijing 100101, China

3. State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China

Abstract

Machine learning techniques offer tremendous potential for optimizing resource allocation in solving real-world problems. However, the emergence of multi-fidelity data introduces new challenges. This paper offers an overview of the definition, applications, data preprocessing methodologies, and learning approaches associated with multi-fidelity data. To validate the algorithms, we examine three widely-used learning methods relevant to multi-fidelity data through the design of multi-fidelity datasets that encompass various types of noise. As we expected, employing multi-fidelity data learning methods yields better results compared to solely using high-fidelity data learning methods. Additionally, considering the inherent various types of noise within datasets, the comprehensive correction strategy proves to be the most effective. Moreover, multi-fidelity learning methods facilitate effective decision-making processes by enabling the combination of datasets from various sources. They extract knowledge from lower fidelity data, improving model accuracy compared to models solely relying on high-fidelity data.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sim-to-Real in Unmanned Surface Vehicle Control: A System Identification-Based Approach for Enhanced Training Environments;2024 9th International Conference on Electronic Technology and Information Science (ICETIS);2024-05-17

2. Multi-fidelity machine learning for predicting bandgaps of nonlinear optical crystals;Physical Chemistry Chemical Physics;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3