A Fast, Low-Cost and Simple Method for Predicting Atomic/Inter-Atomic Properties by Combining a Low Dimensional Deep Learning Model with a Fragment Based Graph Convolutional Network

Author:

Gao Peng,Liu Zonghang,Zhang Jie,Wang Jia-Ao,Henkelman Graeme

Abstract

Calculations with high accuracy for atomic and inter-atomic properties, such as nuclear magnetic resonance (NMR) spectroscopy and bond dissociation energies (BDEs) are valuable for pharmaceutical molecule structural analysis, drug exploration, and screening. It is important that these calculations should include relativistic effects, which are computationally expensive to treat. Non-relativistic calculations are less expensive but their results are less accurate. In this study, we present a computational framework for predicting atomic and inter-atomic properties by using machine-learning in a non-relativistic but accurate and computationally inexpensive framework. The accurate atomic and inter-atomic properties are obtained with a low dimensional deep neural network (DNN) embedded in a fragment-based graph convolutional neural network (F-GCN). The F-GCN acts as an atomic fingerprint generator that converts the atomistic local environments into data for the DNN, which improves the learning ability, resulting in accurate results as compared to experiments. Using this framework, the 13C/1H NMR chemical shifts of Nevirapine and phenol O–H BDEs are predicted to be in good agreement with experimental measurement.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3