Accounting for Machine Learning Prediction Errors in Design

Author:

Du Xiaoping1

Affiliation:

1. Indiana University–Purdue University Indianapolis Department of Mechanical and Energy Engineering, , Indianapolis, IN 46074

Abstract

Abstract Machine learning is gaining prominence in mechanical design, offering cost-effective surrogate models to replace computationally expensive models. Nevertheless, concerns persist regarding the accuracy of these models, especially when applied to safety-critical products. To address this challenge, this study investigates methods to account for model prediction errors by incorporating epistemic uncertainty within surrogate models while managing aleatory uncertainty in input variables. The paper clarifies key aspects of modeling coupled epistemic and aleatory uncertainty when using surrogate models derived from noise-free training data. Specifically, the study concentrates on quantifying the impacts of coupled uncertainty in mechanical design through the development of numerical methods based on the concept of the most probable point. This method is particularly relevant for mechanical component design, where failure prevention holds paramount importance, and the probability of failure is low. It is applicable to design problems characterized by probability distributions governing aleatory and epistemic uncertainties in model inputs and predictions. The proposed method is demonstrated using shaft and beam designs as two illustrative examples. The results demonstrate the method's effectiveness in quantifying and mitigating the influence of coupled uncertainty in the design process.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization Under Uncertainty Using Physics-Based Label-Free Machine Learning;2024 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA);2024-05-23

2. Uncertainty Separation Method for Simulation With Image and Numerical Data;Journal of Verification, Validation and Uncertainty Quantification;2024-03-01

3. Integration of data science with product design towards data-driven design;CIRP Annals;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3