An Investigation of Surrogate Models for Efficient Performance-Based Decoding of 3D Point Clouds

Author:

Cunningham James D.1,Simpson Timothy W.2,Tucker Conrad S.2

Affiliation:

1. Computer Science and Engineering, Penn State University, PA 16802

2. Engineering Design and Industrial and Manufacturing Engineering, Penn State University, PA 16802

Abstract

Abstract This work investigates surrogate modeling techniques for learning to approximate a computationally expensive function evaluation of 3D models. While in the past, 3D point clouds have been a data format that is too high dimensional for surrogate modeling, by leveraging advances in 3D object autoencoding neural networks, these point clouds can be mapped to a one-dimensional latent space. This leads to the fundamental research question: what surrogate modeling technique is most suitable for learning relationships between the 3D geometric features of the objects captured in the encoded latent vector and the physical phenomena captured in the evaluation software? Radial basis functions (RBFs), Kriging, and shallow 1D analogs of popular deep 2D image classification neural networks are investigated in this work. We find the nonintuitive result that departing from neural networks to decode latent representations of 3D objects into performance predictions is far more efficient than using a neural network decoder. In test cases using datasets of aircraft and watercraft 3D models, the non-neural network surrogate models achieve comparable accuracy to the neural network models. We find that an RBF surrogate model is able to approximate the lift and drag coefficients of 234 aircraft models with a mean absolute error of 1.97 × 10−3 and trains in only 3 seconds. Furthermore, the RBF surrogate model is able to rank a set of designs with an average percentile error of less than 8%. In comparison, a 1D ResNet achieves an average absolute error of 1.35 × 103 in 38 min for the same test case. We validate the comparable accuracy of the four techniques through a test case involving 214 3D watercraft models, but we also find that the distribution of the performance values of the data, in particular the presence of many outliers, has a significant negative impact on accuracy. These results contradict a common perception of neural networks as an efficient “one-size-fits-all” solution for learning black-box functions and suggests that even within systems that utilize multiple neural networks, potentially more efficient alternatives should be considered for each network in the system. Depending on the required accuracy of the application, this surrogate modeling approach could be used to approximate an expensive simulation software, or if the tolerance for error is low, it serves as a first pass which can narrow down the number of candidate designs to be analyzed more thoroughly.

Funder

DARPA

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference56 articles.

1. Extending the Use of Parametric Simulation in Practice Through a Cloud Based Online Service;Naboni,2013

2. Performance of Different Optimization Concepts for Reactive Flow Systems Based on Combined Cfd and Response Surface Methods;Rößger;Comput. Chem. Eng.,2018

3. Review of Metamodeling Techniques in Support of Engineering Design Optimization;Wang;ASME J. Mech. Des.,2007

4. A CAD-Based Design Parameterization for Shape Optimization of Elastic Solids;Hardee;Adv. Eng. Softw.,1999

5. A Survey of Shape Parameterization Techniques;Samareh,1999

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3