A Fast Diagnosis Methodology for Typical Faults of a Lithium-Ion Battery in Electric and Hybrid Electric Aircraft

Author:

Hashemi Seyed Reza1,Esmaeeli Roja1,Nazari Ashkan2,Aliniagerdroudbari Haniph1,Alhadri Muapper1,Zakri Waleed1,Mohammed Abdul Haq1,Mahajan Ajay3,Farhad Siamak1

Affiliation:

1. Advanced Energy and Sensor Laboratory, Department of Mechanical Engineering, The University of Akron, Akron, OH 44325

2. Center for Tire Research (CenTiRe), Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061

3. Automated Systems Laboratory, Department of Mechanical Engineering, The University of Akron, Akron, OH 44325

Abstract

Abstract In electric and hybrid-electric aircraft, the battery systems are usually composed of up to thousands of battery cells connected in series or parallel to provide the voltage and power/energy requirements. The inconsistent cells could affect the battery pack and its performance or even endanger electric and hybrid-electric aircraft security; thus, the early fault diagnosis of the battery system is essential. A well-designed battery management system along with a set of reliable voltage and current sensors is required to properly measure and control the cells operational variables in a large battery pack. In this study, based on the battery working mechanism, a new, fast, and robust fault diagnostic scheme is proposed for a lithium-ion battery (LIB) pack that can be employed for applications such as electric and hybrid-electric aircraft. In this method, some faults such as the overcharge, overdischarge occurring in LIB packs can be detected and isolated, based on some predefined factors gained from the battery models in healthy, overcharge, and overdischarge conditions. Finally, the effectiveness of the proposed fast fault diagnosis scheme is experimentally validated with LIBs under a typical flight cycle.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3