Performance Analysis of Li-ion Battery Under Various Thermal and Load Conditions

Author:

Chatterjee Krishnashis1,Majumdar Pradip1,Schroeder David2,Kilaparti S. Rao2

Affiliation:

1. Department of Mechanical Engineering, Northern Illinois University, Dekalb, IL 60115

2. Department of Technology, Northern Illinois University, Dekalb, IL 60115

Abstract

In the recent years, with the rapid advancements made in the technologies of electric and hybrid electric vehicles, selecting suitable batteries has become a major factor. Among the batteries currently used for these types of vehicles, the lithium-ion battery leads the race. Apart from that, the energy gained from regenerative braking in locomotives and vehicles can be stored in batteries for later use for propulsion thus improving the fuel consumption and efficiency. But batteries can be subjected to a wide range of temperatures depending upon the operating conditions. Thus, a thorough knowledge of the battery performance over a wide range of temperatures and different load conditions is necessary for their successful employment in future technologies. In this context, this study aims to experimentally analyze the performance of Li-ion batteries by monitoring the charge–discharge rates, efficiencies, and energy storage capabilities under different environmental and load conditions. Sensors and thermal imaging camera were used to track the environment and battery temperatures, whereas the charge–discharge characteristics were analyzed using CADEX analyzer. The results show that the battery performance is inversely proportional to charge–discharge rates. This is because, at higher charge–discharge rates, the polarization losses increase thus increasing internal heat generation and battery temperature. Also, based on the efficiency and energy storage ability, the optimum performing conditions of the Li-ion battery are 30–40 °C (temperature) and 0.5 C (C-rate).

Funder

U.S. Department of Energy

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference18 articles.

1. Design and Optimization of Lithium-Ion Batteries for Electric-Vehicle Applications,2014

2. Assessment of Battery Technology for Rail Propulsion Application,2017

3. Experimental Study on Thermal Characteristics of LiFePO4 Power Batteries;High Technol. Lett.,2010

4. Novel PCM Thermal Management Makes Li-Ion Batteries a Viable Option for High Power and High Temperature Applications (Vol. 200)

5. Analysis of Heat-Spreading Thermal Management Solutions for Lithium-Ion Batteries,2011

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3