Study on Thermal Effect of Aluminum-Air Battery

Author:

Cai Yajun1,Tong Yunwei1,Liu Yingjie1,Li Xinyu1,Chen Beiyang2,Liu Feng3,Zhou Baowei2,Liu Yichun4ORCID,Qin Zhenbo1,Wu Zhong1ORCID,Hu Wenbin15

Affiliation:

1. School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300072, China

2. Huadian Water Technology Co., Ltd., Beijing 100160, China

3. China Huadian Co., Ltd., Beijing 100031, China

4. School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China

5. Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China

Abstract

The heat released from an aluminum-air battery has a great effect on its performance and operating life during the discharge process. A theoretical model was proposed to evaluate the resulting thermal effect, and the generated heat was divided into the following sources: anodic aluminum oxidation reaction, cathodic oxygen reduction reaction, heat production against the battery internal resistance, and hydrogen-evolution reaction. Quantitative analysis was conducted on each part, showing that all heat production sources increased with discharge current density. It should be noted that the heat caused by hydrogen evolution accounted for the most, up to 90%. Furthermore, the regulation strategy for inhibiting hydrogen evolution was developed by addition of hybrid additives to the electrolyte, and the hydrogen-evolution rate was greatly reduced by more than 50% as was the generated heat. This research has important guidance for the thermal effect analysis of aluminum–air batteries, together with control of the thermal management process by inhibiting hydrogen evolution, thus promoting their practical application.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3