Lithium-Ion Battery Packs Formation With Improved Electrochemical Performance for Electric Vehicles: Experimental and Clustering Analysis

Author:

Yun Liu1,Sandoval Jayne2,Zhang Jian1,Gao Liang3,Garg Akhil1,Wang Chin-Tsan4

Affiliation:

1. Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Guangdong, China

2. Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Guangdong, China; Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ 86011

3. State Key Lab of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China e-mail:

4. Department of Mechanical and Electro-Mechanical Engineering, National ILan University, ILan, Taiwan

Abstract

With the increase of production of electrical vehicles (EVs) and battery packs, lithium ion batteries inconsistency problem has drawn much attention. Lithium ion battery imbalance phenomenon exists during three different stages of life cycle. First stage is premanufacturing of battery pack i.e., during the design, the cells of similar performance need to be clustered to improve the performance of pack. Second is during the use of battery pack in EVs, batteries equalization is necessary. In the third stage, clustering of spent lithium ion batteries for reuse is also an important problem because of the great recycling challenge of lithium batteries. In this work, several clustering and equalization methods are compared and summarized for different stages. The methods are divided into the traditional methods and intelligent methods. The work also proposes experimental combined clustering analysis for new lithium-ion battery packs formation with improved electrochemical performance for electric vehicles. Experiments were conducted by dismantling of pack and measurement of capacity, voltage, and internal resistance data. Clustering analysis based on self-organizing map (SOM) neural networks is then applied on the measured data to form clusters of battery packs. The validation results conclude that the battery packs formed from the clustering analysis have higher electrochemical performance than randomly selected ones. In addition, a comprehensive discussion was carried out.

Funder

Huazhong University of Science and Technology

Shantou University

Guangdong Science and Technology Department

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3