Pipeline Slug Flow Dynamic Load Characterization

Author:

Reda Ahmed1,Forbes Gareth L.1,Sultan Ibrahim A.2,Howard Ian M.1

Affiliation:

1. School of Civil and Mechanical Engineering, Curtin University, Perth 6102, WA, Australia e-mail:

2. School of Science, Engineering and Information Technology, Federation University Australia, Ballarat 3350, VIC, Australia e-mail:

Abstract

Flow of gas in pipelines is subject to thermodynamic conditions which produces two-phase bulks (i.e., slugs) within the axial pipeline flow. These moving slugs apply a moving load on the free spanning pipe sections, which consequently undergo variable bending stresses, and flexural deflections. Both the maximum pipeline stress and deflection due to the slug flow loads need to be understood in the design of pipeline spans. However, calculation of a moving mass on a free spanning pipeline is not trivial and the required mathematical model is burdensome for general pipeline design engineering. The work in this paper is intended to investigate the conditions under which simplified analysis would produce a safe pipeline design which can be used by practicing pipeline design engineers. The simulated finite element models presented here prove that replacing the moving mass of the slug by a moving force will produce adequately accurate results at low speeds where the mass of the slug is much smaller than the mass of the pipe section. This result is significant, as the assumption of point load simplifies the analysis to a considerable extent. Since most applications fall within the speed and mass ratio which justify employing this simplified analysis, the work presented here offers a powerful design tool to estimate fatigue stresses and lateral deflections without the need of expensive time-consuming inputs from specialized practitioners.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3