Characterisation of Slug Flow Conditions in Pipelines for Fatigue Analysis

Author:

Reda Ahmed M.1,Forbes Gareth L.1,Sultan Ibrahim A.2

Affiliation:

1. Curtin University, Perth, WA, Australia

2. University of Ballarat, Ballarat, VIC, Australia

Abstract

Understanding the problem of slug flow induced fatigue damage is of particular importance to the reliable operation of pipelines. Slug flow across unsupported pipeline spans, pipeline crossings or vertical engineered buckle initiators, i.e. sleepers, produces dynamic motion in the pipeline resulting in cyclic fatigue stresses. In some cases, the dynamic effects will cause the pipeline to fail at a point of stress concentration. In other cases, however, these effects may be negligible. The current literature provides no guidance as to when the dynamic effects of slug flow must be considered. This paper gives guidance and describes how fatigue due to slug flow in pipelines, which would normally require dynamic analysis, can be quantified using simplified quasi-static analysis. The paper also presents a design process which could be used by pipeline engineers to determine the level of analysis needed, before embarking on more complex and expensive dynamic finite element.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pipeline Slug Flow Dynamic Load Characterization;Journal of Offshore Mechanics and Arctic Engineering;2018-08-13

2. Finite Element Analysis of Fatigue in Pipelines due to Slug Flow;Advanced Materials Research;2013-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3