Effect of Reversing Heat Flux Direction During Reflow on Void Formation in High-Lead Solder Bumps

Author:

Wang Daijiao1,Panton Ronald L.21

Affiliation:

1. Mechanical Engineering Department, The University of Texas at Austin, 1 University Station C2200, ETC 5.160, Austin, TX 78712

2. Fellow ASME

Abstract

Experiments were carried out to investigate the effect of reversing the heat flux direction during cooling on the formation of voids during the reflow process. Under different upward and downward solidification conditions, 480 high-lead (90Pb∕8Sn∕2Ag) solder joints of flip-chip assemblies were processed. The solder samples were then microsectioned to determine the size and location of voids. The results show that reversing the flow direction during cooling has a significant effect on the final void formation. For the case of the melting direction from top (flip-chip side) to bottom (test board side), reversing the heat flux direction results in solidification direction from top to bottom. The percentage of defective bumps was found to be 28% and the volume of voids per defective bump was 1.5%. This is the best reflow methodology to minimize voids. Without reversing the heat flux the defective bumps were 80% with 4.0% void volume. In the case of solidification direction/melting direction from bottom to top, the percentage of defective bumps increases from 40% to 51%, accompanying a rise of the volume of voids from 3.0% to 3.7%.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference8 articles.

1. Voiding in BGA at Solder Bumping Stage;Chiu

2. Characteristics of Porosity in Solder Pastes During Infrared Reflow Soldering;Chan;J. Mater. Sci.

3. Void Formation in Flip-Chip Solder Bumps—Part I;Goenka

4. Computational Modeling Techniques for Reliability of Electronic Components on Printed Circuit Boards;Bailey;Appl. Numer. Math.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3