Analysis of the Effect of Tool Posture on Stability Considering the Nonlinear Dynamic Cutting Force Coefficient

Author:

Li Zepeng1,Yan Rong1,Tang Xiaowei1,Peng Fangyu2,Xin Shihao1,Wu Jiawei1

Affiliation:

1. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

2. School of Mechanical Science and Engineering; State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Abstract In aviation and navigation, complicated parts are milled with high-speed low-feed-per-tooth milling to decrease tool vibration for high quality. Because the nonlinearity of the cutting force coefficient (CFC) is more evident with the relatively smaller instantaneous uncut chip thickness, the stable critical cutting depth and its distribution against different tool postures are affected. Considering the nonlinearity, a nonlinear dynamic CFC model that reveals the effect of the dynamic instantaneous uncut chip thickness on the dynamic cutting force is derived based on the Taylor expansion. A five-axis bull-nose end milling dynamics model is established with the nonlinear dynamic CFC model. The stable critical cutting depth distribution with respect to tool posture is analyzed. The stability results predicted with the dynamic CFC model are compared with those from the static CFC model and the constant CFC model. The effects of tool posture and feed per tooth on stable critical cutting depth were also analyzed, and the proposed model was validated by cutting experiments. The maximal stable critical cutting depths that can be achieved under different tool postures by feed per tooth adjustment were calculated, and corresponding distribution diagrams are proposed for milling parameter optimization.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3