Stability Analysis and Nonlinear Chatter Prediction for Grinding a Slender Cylindrical Part

Author:

Sun Tianyi1,Yan Yao1

Affiliation:

1. School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract

A cylindrical plunge grinding process was modeled to investigate nonlinear regenerative chatter vibration. The rotating workpiece was a slender Euler–Bernoulli beam, and the grinding wheel was a rigid body moving towards the workpiece at a very low feed speed. A numerical method was proposed to provide the critical boundaries for chatter-free grinding. It was demonstrated that the intersection set surrounded by these critical boundaries was the chatter-free region for the considered parameters. When these parameters were outside of the chatter-free region, the stable grinding process underwent a supercritical Hopf bifurcation, resulting in the loss of the chatter-free behavior and the emergence of periodic chatter motions. Then, the periodic motions of both the grinding wheel and the workpiece were predicted analytically using the method of multiple scales, showing the effect of the regenerative force on the grinding process. We demonstrated that the analytical prediction was valid since it agreed with the numerical simulation. The results showed that there exist three kinds of nonlinear chatter motion, with different amplitudes and mode frequencies.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3