Accurate prediction method for a microstructure profile based on the force–displacement coupled servo model

Author:

Fu Siyuan1,Yang Hong1ORCID,Jiang Zhong1ORCID,Sun Shouli1ORCID,Duan Fang1

Affiliation:

1. Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang, Sichuan Province, China

Abstract

Microstructures of specified shapes have been widely applied in electronics, communication, optics, avionics, medical science, and the automotive field. The ultraprecision single-point diamond turning lathe is a core instrument used in microstructure preparation. As a key technical indicator of an ultraprecision lathe, the servo control accuracy of a system directly affects the machining accuracy of the lathe. Because the profile error of microstructures machined by the slow tool servo of the ultraprecision lathe is at the micrometer level, any disturbance reduces the accuracy of parts machining. This paper proposes a tracking error prediction model based on the force–displacement coupled servo model to study the mechanism of action for the cutting force disturbance on a servo control system. The repeated positioning error of an ultraprecision lathe’s linear axis is added to the force–displacement coupled servo model to propose a more practical profile error prediction model and analyze the effect of the cutting force on the part profile. The experimental results indicate that the force–displacement coupled servo tracking error and profile error prediction model proposed in this paper is more accurate than the existing tracking error modeling method without cutting force disturbance. In addition, this paper analyzes how the cutting force in ultraprecision machining affects the servo system and part profile, which provides a reference for subsequent ultraprecision lathe error analysis and improved machining accuracy.

Funder

Department of Science and Technology of Sichuan Province

CAEP Foundation

Sichuan Province Science and Technology Support Program

National Natural Science Foundation of China

Dream Project of Ministry of Science and Technology of the People’s Republic of China

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3