Prediction of Material Removal Rate for Chemical Mechanical Planarization Using Decision Tree-Based Ensemble Learning

Author:

Li Zhixiong1,Wu Dazhong2,Yu Tianyu1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 e-mail:

2. Department of Mechanical and Aerospace Engineering, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816 e-mail:

Abstract

Chemical mechanical planarization (CMP) has been widely used in the semiconductor industry to create planar surfaces with a combination of chemical and mechanical forces. A CMP process is very complex because several chemical and mechanical phenomena (e.g., surface kinetics, electrochemical interfaces, contact mechanics, stress mechanics, hydrodynamics, and tribochemistry) are involved. Predicting the material removal rate (MRR) in a CMP process with sufficient accuracy is essential to achieving uniform surface finish. While physics-based methods have been introduced to predict MRRs, little research has been reported on monitoring and predictive modeling of the MRR in CMP. This paper presents a novel decision tree-based ensemble learning algorithm that can train the predictive model of the MRR. The stacking technique is used to combine three decision tree-based learning algorithms, including the random forests (RF), gradient boosting trees (GBT), and extremely randomized trees (ERT), via a meta-regressor. The proposed method is demonstrated on the data collected from a CMP tool that removes material from the surface of wafers. Experimental results have shown that the decision tree-based ensemble learning algorithm using stacking can predict the MRR in the CMP process with very high accuracy.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3