Multi-source ensemble method with random source selection for virtual metrology

Author:

Zhang Gejia,Wang Tianhui,Baek Jaeseung,Jeong Myong-KeeORCID,Seo Seongho,Choi Jaekyung

Abstract

AbstractIn the era of Industry 4.0, the complexity of semiconductor production is growing very fast, raising the possibility of unnoticed defective wafers and subsequent wasteful use of resources. One of the key advantages of Industry 4.0 is the accessibility to big data, which can be obtained from a number of sensors, including multiple sensor data and extensive data repositories. Recently, engineers have developed data fusion strategies for virtual metrology (VM) prediction models to effectively handle data from multiple sources. This research explores a novel approach for data-driven VM prediction model for multi-source data, namely multi-source ensemble method with random source selection. By utilizing the bagging principle for multi-source data and tree-based prediction paradigms, the proposed approach randomly selects subsets of data sources to construct each tree learner, thus reducing interdependence among the trees and minimizing the risk of overfitting, which can be a challenge faced by existing tree-based prediction models. To validate and illustrate the practical applicability of our proposed method, we use real-world data from the plasma etching process, aiming to provide potential benefits and effectiveness of our methodology.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3