Topology Optimization With Many Right-Hand Sides Using Mirror Descent Stochastic Approximation—Reduction From Many to a Single Sample

Author:

Zhang Xiaojia Shelly12,de Sturler Eric3,Shapiro Alexander4

Affiliation:

1. Department of Civil, and Environmental Engineering;

2. Department of Mechanical, Science and Engineering, University of Illinois at Urbana Champaign, Urbana, IL 61801

3. Department of Mathematics, Virginia Tech, Blacksburg, VA 24061

4. School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332

Abstract

Abstract Practical engineering designs typically involve many load cases. For topology optimization with many deterministic load cases, a large number of linear systems of equations must be solved at each optimization step, leading to an enormous computational cost. To address this challenge, we propose a mirror descent stochastic approximation (MD-SA) framework with various step size strategies to solve topology optimization problems with many load cases. We reformulate the deterministic objective function and gradient into stochastic ones through randomization, derive the MD-SA update, and develop algorithmic strategies. The proposed MD-SA algorithm requires only low accuracy in the stochastic gradient and thus uses only a single sample per optimization step (i.e., the sample size is always one). As a result, we reduce the number of linear systems to solve per step from hundreds to one, which drastically reduces the total computational cost, while maintaining a similar design quality. For example, for one of the design problems, the total number of linear systems to solve and wall clock time are reduced by factors of 223 and 22, respectively.

Funder

University of Illinois

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3