Abstract
AbstractReal-world structural optimisation problems involve multiple loading conditions and design constraints, with responses typically depending on states of discretised governing equations. Generally, one uses gradient-based nested analysis and design approaches to solve these problems. Herein, solving both physical and adjoint problems dominates the overall computational effort. Although not commonly detected, real-world problems can contain linear dependencies between encountered physical and adjoint loads. Manually keeping track of such dependencies becomes tedious as design problems become increasingly involved. This work proposes using a Linear Dependency Aware Solver (LDAS) to detect and exploit such dependencies. The proposed algorithm can efficiently detect linear dependencies between all loads and obtain the exact solution while avoiding unnecessary solves entirely and automatically. Illustrative examples demonstrate the need and benefits of using an LDAS, including a run-time experiment.
Funder
Dutch Research Council (NWO) Applied and Engineering Sciences
Publisher
Springer Science and Business Media LLC
Subject
Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献