Effect of Tip Clearance on Stall Evolution Process in a Low-Speed Axial Compressor Stage

Author:

Inoue Masahiro1,Kuroumaru Motoo1,Yoshida Shinichi1,Minami Takahiro2,Yamada Kazutoyo3,Furukawa Masato1

Affiliation:

1. Kyushu University, Fukuoka, Japan

2. Mitsubishi Heavy Industries, Ltd.

3. Iwate University, Morioka, Japan

Abstract

Effect of the tip clearance on the transient process of rotating stall evolution has been studied experimentally in a low-speed axial compressor stage with various stator-rotor gaps. In the previous authors’ experiments for the small tip clearance, the stall evolution process of the rotor was sensitive to the gaps between the blade rows. For the large tip clearance, however, little difference is observed in the evolution processes independently of the blade row gap. In the first half process, it is characterized by gradual reduction of overall pressure-rise with flow rate decreasing, and the number of short length-scale disturbances is increasing with their amplitude increasing. In the latter half a long length-scale disturbance develops rapidly to result in deep stall. Just before the stall inception the spectral power density of the casing wall pressure reveals the existence of rotating disturbances with broadband high frequency near a quarter of the blade passing frequency. This is caused by the short length-scale disturbances occurring intermittently. A flow model is presented to explain mechanisms of the rotating short length-scale disturbance, which includes a tornado-like separation vortex and tip-leakage vortex breakdown. The model is supported by a result of a numerical unsteady flow simulation.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3