Analysis Method of Nonsynchronous Vibration and Influence of Tip Clearance Flow Instabilities on Nonsynchronous Vibration in an Axial Transonic Compressor Rotor

Author:

Han Le1,Wei Dasheng1,Wang Yanrong1,Jiang Xianghua1,Zhang Xiaojie1

Affiliation:

1. School of Energy and Power Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing 100191, China

Abstract

Abstract The relationship between the tip clearance flow (TCF) and the blade vibration in the lock-in region was numerically investigated on a transonic rotor. Both the bending (1B) and torsional (8th) modes were analyzed under 0 ND. The time marching method and a single-passage model were used, which were verified by citing and comparing with the results in references. The phase of the TCF (referring to the phase difference between the unsteady pressure caused by the TCF and the blade vibration) changed with the frequency ratio in the lock-in region. The strength of the TCF was influenced slightly by the blade vibration amplitude. A separation method of the unsteady pressure caused by the TCF and the blade vibration was developed and verified at different conditions. The unsteady pressure of nonsynchronous vibration (NSV) was separated into the components of the TCF and the blade vibration under the 1B and 8th modes. The unsteady pressure component of the TCF changed little with the vibration amplitude and mainly existed in the tip area. The unsteady pressure component of the blade vibration was larger at part spans and its distribution depended on the modal shape and the vibration amplitude. The unsteady pressure components of the TCF and the blade vibration determined the aerodynamic work/damping in the lock-in region. The aerodynamic work components of the TCF and the blade vibration increased linearly and at a rate of the square with the vibration amplitude, respectively. TCF was dominant in the initial stage of vibration. With the vibration amplitude increasing, the aerodynamic work done by the unsteady pressure component of the blade vibration gradually caught up. The aerodynamic damping of the TCF changed with the phase of the TCF. TCF provided positive damping at some phases and negative damping at other phases. In the initial stage of vibration, the system was stable at the phases TCF providing positive damping and unstable at the phases of negative damping. NSV occurred only when TCF provided negative damping and the unsteady pressure component of the blade vibration provided positive damping. If the aerodynamic damping of the blade vibration was negative, the vibration would be enlarged until failure. Regardless of other damping forms, the maximum amplitude of NSV can be obtained by calculating the balance of the aerodynamic work. For the 8th mode, the limit amplitude under 0 ND was 0.0926%C, which corresponded to vibration stress of about 60 MPa.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3