Analysis of Thermal Stress and Its Influence on Carrier Mobility in Three-Dimensional Microelectronic Chip Stack

Author:

Johnson R. W.1,Shen Y.-L.2

Affiliation:

1. Department of Mechanical Engineering, University of New Mexico, Albuquerque, NM 87131

2. Department of Mechanical Engineering, University of New Mexico, Albuquerque, NM 87131 e-mail:

Abstract

A numerical assessment on the thermal stress in a three-dimensional (3D) microelectronic package structure is performed. The objectives are to study how the chip stack/microbump assembly responds to thermal mismatch induced deformation, and its influences on the electrical performance of devices. The 3D finite element model features a copper through-silicon-via (TSV)/microbump bonding structure connecting two adjacent silicon chips, with and without an underfill layer in between. A case that the entire solder layer has been transformed into an intermetallic layer is also considered. Potential for damage initiation is examined by the measure of stress and strain patterns. It was found that the part of TSV well inside the silicon chip is under high triaxial tensile stresses after thermal cooling, and plastic deformation in copper occurs in and around the microbump regions. The existence of underfill increases plastic strains in the solder joint. The underfill also leads to a significant change in local stress field when the soft solder is transformed entirely into an intermetallic layer. The carrier mobility for the p- and n-type devices is influenced by the stresses in silicon near the TSV; the sizes of “keep-out zone” for the various model configurations are also quantified.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Recent Research on Heat Transfer in Three-Dimensional Integrated Circuits (3-D ICs);IEEE Transactions on Components, Packaging and Manufacturing Technology;2021-05

2. An anisotropic thermal-stress model for through-silicon via;Journal of Semiconductors;2018-02

3. The Effects of Silica Fillers on the Properties of Encapsulation Molding Compounds;Journal of Electronic Packaging;2017-07-10

4. Chip Warpage Induced by Tapered Through-Silicon Vias: A Numerical Analysis;IEEE Transactions on Device and Materials Reliability;2015-12

5. Temporary Bonding/Debonding of Silicon Substrates Based on Propylene Carbonate;Journal of Electronic Packaging;2015-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3