Free-Stream Effects on the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes

Author:

Saumweber Christian1,Schulz Achmed2

Affiliation:

1. Institut für Angewandte Thermo- und Fluiddynamik, Hochschule Mannheim, Mannheim, 68163, Germany

2. Institut für Thermische Strömungsmaschinen, Karlsruher Institut für Technologie, Karlsruhe, 76131, Germany

Abstract

From literature and our own studies, it is known that the effects of hot gas cross-flow and, in particular, the turbulence of the hot gas flow highly influence the spreading of the coolant in the near hole vicinity. Moreover, the velocity of the hot gas flow expressed by a hot gas Mach number obviously plays a much more important role in the case of diffuser holes than with simple cylindrical holes. To realize a certain blowing rate, a higher pressure ratio needs to be established in the case of higher Mach numbers. This in turn may strongly affect the diffusion process in the expanded portion of a fan-shaped cooling hole. The said effects will be discussed in great detail. The effects of free-stream Mach number and free-stream turbulence, including turbulence intensity, integral length scale, and periodic unsteady wake flow will be considered. The comparative study is performed by means of discharge coefficients and by local and laterally averaged adiabatic film cooling effectiveness and heat transfer coefficients. Both cooling holes have a length-to-diameter ratio of 6 and an inclination angle of 30 deg. The fan-shaped hole has an expansion angle of 14 deg. The effect of the coolant cross-flow at the hole entrance is not considered in this study, i.e., plenum conditions exist at the hole entrance.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3