Interaction of Film Cooling Rows: Effects of Hole Geometry and Row Spacing on the Cooling Performance Downstream of the Second Row of Holes

Author:

Saumweber Christian1

Affiliation:

1. Lehrstuhl und Institut fu¨r Thermische Stro¨mungsmaschinen, Universitat Karlsruhe (T.H.), Kaiserstr. 12, Karlsruhe 76128, Germany

Abstract

A comprehensive set of generic experiments is conducted to investigate the interaction of film cooling rows. Five different film cooling configurations are considered on a large-scale basis each consisting of two rows of film cooling holes in staggered arrangement. The hole pitch to diameter ratio within each row is kept constant at P/D=4. The spacing between the rows is either x/D=10, 20, or 30. Fan-shaped holes or simple cylindrical holes with an inclination angle of 30 deg and a hole length of 6-hole diameters are used. With a hot gas Mach number of Mam=0.3, an engine like density ratio of ρc/ρm=1.75, and a freestream turbulence intensity of Tu=5.1% are established. Operating conditions are varied in terms of blowing ratio for the upstream and, independently, the downstream row in the range 0.5<M<2.0. The results illustrate the importance of considering ejection into an already film-cooled boundary layer. Adiabatic film cooling effectiveness and heat transfer coefficients are significantly increased. The decay of effectiveness with streamwise distance is much less pronounced downstream of the second row primarily due to pre-cooling of the boundary layer by the first row of holes. Additionally, a comparison of measured effectiveness data with predictions according to the widely used superposition model of Sellers is given for two rows of fanshaped holes.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3