Aspects of Vane Film Cooling With High Turbulence: Part I—Heat Transfer

Author:

Ames F. E.1

Affiliation:

1. University of North Dakota, Grand Forks, ND 58202

Abstract

A four-vane subsonic cascade was used to investigate the influence of film injection on vane heat transfer distributions in the presence of high turbulence. The influence of high turbulence on vane film cooling effectiveness and boundary layer development was also examined in part II of this paper. A high-level, large-scale inlet turbulence was generated for this study with a mock combustor (12 percent) and was used to contrast results with a low level (1 percent) of inlet turbulence. The three geometries chosen to study in this investigation were one row and two staggered rows of downstream cooling was found to have only a moderate influence on the heat transfer coefficients downstream from arrays on the suction surface where the boundary layer was turbulent. However, film cooling was found to have a substantial influence on heat transfer downstream from arrays in laminar regions of the vane such as the pressure surface, the stagnation region, and the near-suction surface. Generally, heat transfer augmentation was found to scale on velocity ratio. In relative terms, the augmentation in the laminar regions for the low turbulence case was found to be the highest for the high turbulence case.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3