Heat Transfer Coefficient and Adiabatic Effectiveness Measurements on a Nozzle Guide Vane With a Single Row of Cylindrical Holes

Author:

Galeotti S.1,Bacci T.1,Picchi A.1,Facchini B.1,Cubeda S.2

Affiliation:

1. University of Florence DIEF—Department of Industrial Engineering of Florence, , Via S. Marta 3, Firenze 50139 , Italy

2. Baker Hughes , Via Felice Matteucci 2, Firenze 50127 , Italy

Abstract

Abstract Film-cooling injection significantly affects the thermal behavior of turbine vane surfaces. In addition to the beneficial effect of the film shielding the vane from the hot gas flow, alteration of the thermal boundary layer should also be taken into account. The aim of the present work is to detail the film-cooling performance in terms of adiabatic effectiveness and external heat transfer coefficient on a 2D nozzle guide vane. A single row of cylindrical holes was tested on both pressure and suction sides of a literature vane, the VKI LS89, in a linear cascade. The employed measurement technique is a transient thermal method based on infrared thermography, which was thoroughly described and validated in a previous work. The influence of inlet freestream turbulence and blowing ratio was evaluated, and two different injection angles were considered for both pressure and suction sides. Spatially resolved distributions of adiabatic effectiveness and heat transfer coefficient (HTC) on the vane surface allow us to precisely quantify the above-mentioned aspects and highlight qualitative differences between pressure side and suction side behavior. Details regarding the generated non-uniformities in the measured parameters could be also provided, to emphasize how average quantities are not always sufficient to characterize such complex phenomena. The impact of different reference conditions to scale HTC results was also investigated. Such effect was found not negligible on the overall performance of the film-cooling system, especially on the suction side where transition plays a critical role. Ultimately, the collected results constitute a wide and detailed experimental database for numerical modeling validation in a well-studied environment as the LS89 configuration.

Publisher

ASME International

Subject

Mechanical Engineering

Reference46 articles.

1. Measurement of Local Heat Transfer Coefficient and Film Cooling Effectiveness Through Discrete Holes;Martinez-Botas,2000

2. Film Cooling;Goldstein;Adv. Heat Transfer,1971

3. Gas Turbine Film Cooling;Bogard;AIAA J. Propul. Power,2006

4. A Review of Shaped Hole Turbine Film-Cooling Technology;Bunker;ASME J. Heat Transfer-Trans. ASME,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3