Effect of Crossflows on the Discharge Coefficient of Film Cooling Holes

Author:

Hay N.1,Lampard D.1,Benmansour S.1

Affiliation:

1. Department of Mechanical Engineering, University of Nottingham, United Kingdom

Abstract

The strongest flow parameter governing the film cooling effectiveness provided by a row of holes is the blowing rate. Precise setting of the blowing rate at the design stage requires accurate data for the discharge coefficient of the holes. The effects of crossflow on the discharge coefficient have received scant attention in published work to date. In the present work, the discharge coefficient of single rows of holes has been measured in a specially constructed isothermal rig over a wide range of geometric and flow conditions. Mainstream and coolant Mach numbers have been varied independently over the range 0 to 0.4 for pressure ratios in the range 0 to 2. Cooling hole length to diameter ratios were varied between 2 and 6, and inclinations of 30, 60, and 90 deg were used. The results show that the influence of crossflow is strong and complex, particularly with regard to that on the coolant side. A large range of data is presented sufficient to permit the discharge coefficient to be inferred for many cases of practical importance. Suggestions are also made for a promising theoretical approach to this problem.

Publisher

ASME International

Subject

General Medicine

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3