Comparison the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes With Special Emphasis on the Effect of Internal Coolant Cross-Flow

Author:

Saumweber Christian1,Schulz Achmed2

Affiliation:

1. Behr GmbH & Co. KG, Stuttgart, Germany

2. Universita¨t Karlsruhe, Karlsruhe, Germany

Abstract

Cooling holes in real gas turbine applications are prevalently exposed to cross-flow in the coolant passage. The majority of the studies available in literature do not consider the effects of flow in the coolant passage. Our own studies however reveal that especially diffuser holes are very susceptible in respect to cross-flow at the hole entrance, if the orientation of the cross-flow is perpendicular to the symmetry plane of the cooling hole. The effect of coolant cross-flow will be discussed in detail. The superordinate target is to identify the dominating mechanisms, which determine the flow field within the diffuser hole and hence limit the potential of cooling performance augmentation. For this reason a fan-shaped hole with 14° expansion angle will be compared to a simple cylindrical hole. Both holes have a length-to-diameter ratio of 6 and an inclination angle of 30°. The comparison will be performed by means of experimentally gained discharge coefficients, local and laterally averaged adiabatic film cooling effectiveness, and heat transfer coefficients. Numerical simulations of the cooling flow will support the interpretation of the experimental results.

Publisher

ASMEDC

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3