Void Formation Mechanism of Flip Chip in Package Using No-Flow Underfill

Author:

Lee Sangil1,Yim M. J.1,Baldwin Daniel1

Affiliation:

1. The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA 30332

Abstract

This paper investigates the void formation mechanism induced by chemical interaction between eutectic solder (Sn63/Pb37) wetting and no-flow underfill material curing during flip chip in package assembly. During the process, low weight molecular components, such as fluxing agents and water molecules, could be induced by the chemical interaction between solder wetting and underfill curing when these components are heated to melt and cure, respectively. The low weight molecular components become volatile with exposure to temperatures above their boiling points; this was found to be the main source of the extensively formed underfill voiding. This mechanism of chemically and thermally induced voids was explained using void formation study, differential scanning calorimetry thermogram comparison, and gas chromatography and mass spectroscopy chemical composition identification on the suggested chemical reaction formula. This finding can enhance understanding of the mechanism that drives no-flow underfill voiding and can develop a void-free flip chip assembly process using no-flow underfill material for cost effective and high performance electronics packaging applications. Furthermore, this study provides the design guideline to develop an advanced no-flow underfill having high performance at high temperature range for the lead-free application.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference21 articles.

1. Assembly and Reliability of Flip Chip on Boards Using ACAs or Eutectic Solder With Underfill;Zhong;Microelectron. Int.

2. Flip Chip on Board Connection Technology: Process Characterization and Reliability;Giesler;IEEE Trans. Compon., Packag. Manuf. Technol., Part B

3. Lee, S., Master, R., and Baldwin, D., 2007, Surface Mount Technology Association International 525.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3