Thermal Transport Characteristics of Mixed Pressure and Electro-Osmotically Driven Flow in Micro- and Nanochannels With Joule Heating

Author:

Chen Chien-Hsin1

Affiliation:

1. Department of Mechanical Design Engineering, National Formosa University, Huwei, Yunlin 632, Taiwan

Abstract

This study investigates convective transport phenomena of combined electro-osmotic and pressure-driven flow in a microchannel subject to constant surface heat flux, with Joule heating effect taken into account. The governing system of equations includes the electric potential field, flow field, and energy equations. Analytical solutions are obtained for constant fluid properties, while numerical solutions are presented for variable fluid properties. For constant properties, the problem is found to be governed by three ratios: the length scale ratio (the ratio of Debye length to half channel height), the velocity scale ratio (the ratio of pressure-driven velocity to electro-osmotic velocity), and the ratio of Joule heating to surface heat flux. A small length scale ratio corresponds to a microchannel, while finite length scale ratio represents a nanochannel. For electro-osmotic flow only, the momentum transport is solely a function of the length scale ratio. For combined electro-osmotic and pressure-driven flow, the velocity profile and therefore the friction factor depend on both the length scale ratio and the velocity scale ratio. Assuming a thermally fully developed flow, analytical expressions for the normalized temperature profile and Nusselt number are developed. The representative results for the friction factor, normalized temperature profile, and Nusselt number are illustrated for some typical values of the three ratios. For purely electro-osmotic flow, it is found that the Nusselt number increases with decreasing ε, approaching the value for slug flow as the length scale ratio approaches zero. For mixed flow with a given length scale ratio, the results show that the Nusselt number decreases with the velocity scale ratio, approaching the classical Poiseuille flow as the velocity scale ratio approaches infinite. When the effects of variable fluid properties are included in the analysis, numerical solutions are generated to explore the influence of thermal conductivity and viscosity variations with local temperature on the hydrodynamic and thermal characteristics of the fluid. These temperature-dependent property variations would initially develop pressure-driven flow, and correspondingly the dimensionless velocity and volume flow rate increase to account for such variations. The friction factor reduces considerably with viscosity variation, while the Nusselt number increases gently. Although the influence of thermal conductivity variation on the hydrodynamic characteristics is not impressive, it has certain impact on the heat transfer results; more specifically, increasing the conductivity variation will produce a sensible increase in Nusselt number but a small decrease in the normalized temperature.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference26 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3