Abstract
Abstract
Electrokinetic energy conversion in hydrophobic nanochannels has been studied by many scholars because of its high estimated conversion efficiency. However, these studies mainly focued on the the case of slip-independent zeta potential, ignoring the effect of slip length on zeta potential. In the paper, we study the energy conversion of pressure-driven flow in plane nanochannel with slip-dependent (S.D.) zeta potential. Through the derived analytical expression and schematic analysis of electrokinetic energy conversion efficiency, it can be observed that, within specific parameter ranges, when taking into account the S.D. zeta potential, the conversion efficiency is improved. The maximum conversion efficiency obtained is approximately 23%, which is an improvement of 5.9% compared to the slip-independent (S.I.) zeta potential. This study may have a positive impact on achieving more efficient energy collection and play a important role in the energy field.
Funder
Key Laboratory of Infinite-dimensional Hamiltonian System and Its Algorithm Application (Inner Mongolia Normal University), Ministry of Education
Scientific research funding project for introduced high level talents of IMNU
Fundamental Research Funds for the Inner Mongolia Normal University
National Natural Science Foundation of China
Natural Science Key Project of Science and Technology Research in Higher Education Institutions of Inner Mongolia Autonomous Region
Subject
Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献