Effect of sinusoidal heated blocks on electroosmotic flow mixing in a microchannel with modified topology

Author:

Sahoo S.1ORCID,Majhi M.1ORCID,Nayak A. K.1ORCID

Affiliation:

1. Department of Mathematics, Indian Institute of Technology Roorkee , Roorkee 247667, India

Abstract

The present study is focused on micromixing enhancement techniques for electroosmotic flows in a modulated microchannel with a modified topology by utilizing heated blocks on the surface of the microchannel. The heated blocks carry higher temperatures as compared to the other portions of the channel wall, resulting in a sharp variation in the temperature of the fluid. The species transport is governed by the Nernst–Planck equation in a modified form by adding a thermo-electrochemical migration term due to the temperature variation in the ions, justifying the electrochemical equilibrium conditions. The fluid considered for the study is non-Newtonian and is governed by a power-law model. The Navier–Stokes equations, along with the thermal energy equation, are simulated numerically in a coupled form utilizing a finite volume-based semi-implicit method for the pressure-linked equation algorithm to interpret the behavior of the electric potential distribution, the external electric field, the flow field, the temperature distribution, and the species concentration, which are the major contributors for the mixing efficiency. The numerically simulated results are varied with the analytical results for the simple electroosmotic flow in the microchannel, indicating that the mixing efficiency can be enhanced by increasing the temperature of the heated blocks. Due to the thermo-electrochemical migration, ions are redistributed along the heated blocks, oscillating the flow velocity by creating vortices, resulting in the mixing enhancement. The effects of the geometrical parameters, the Debye–Hückel parameter, the temperature gradient, the power-law index, and the Nusselt number are elaborated for the effective flow rate and micromixing. The mixing efficiency is found to be optimum for higher temperature gradients and higher power-law indices. The net throughput analysis that combines the geometrical modulation and wall temperature variation will aid in improving the design and fabrication of microfluidic mixers.

Funder

Science and Engineering Research Board

National Board for Higher Mathematics

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3