Identifying Levers Related to Student Performance on High-Stakes Science Exams: Examining School, Teaching, Teacher, and Professional Development Characteristics

Author:

Fischer Christian1,Foster Brandon2,Mccoy Ayana3,Lawrenz Frances4,Dede Chris5,Eisenkraft Arthur3,Fishman Barry J.6,Frumin Kim5,Levy Abigail Jurist2

Affiliation:

1. University of Tübingen

2. Education Development Center, Inc.

3. University of Massachusetts Boston

4. University of Minnesota

5. Harvard University

6. University of Michigan

Abstract

Background Many students enter into postsecondary education without the preparation to face the demands of postsecondary coursework in science. Increasingly, policymakers and educational researchers are responding to calls for reforming secondary education to provide more opportunity for all students to receive high-quality education and to become career and college ready. Purpose This study attempts to identify levers to increase student learning in secondary education. In particular, it examines relationships between school, teaching, teacher, and teacher professional development characteristics and student scores on high-stakes Advanced Placement (AP) examinations in the sciences. Setting This study is situated in the context of the large-scale, top-down, nationwide AP curriculum and examination reform in the sciences (biology, chemistry, physics) in the United States. This is an unprecedented opportunity to analyze changing educational landscapes in the United States with large-scale national student-, teacher-, school-, and district-level datasets across multiple science disciplines and different stages of the curriculum reform implementation connected to a standardized and high-stakes student outcome measure. Population This study analyzes nationwide data samples of the AP Biology, AP Chemistry, and AP Physics population during the first, second, and third year of the curriculum reform implementation. Across disciplines and years, the analytical samples include a total of 113,603 students and 6,046 teachers. Research Design This empirical quantitative study uses data from web-based surveys sent to all AP science teachers. Additionally, the College Board provided student- and school-level data for all students taking AP examinations. Data preparation methods included exploratory and confirmatory factor analysis. Associations with student achievement were analyzed through a multilevel ordered logistic regression analysis, separately by science discipline and year of the curriculum reform implementation. Afterwards, results were aggregated through a meta-analysis. Findings Even after controlling for student background variables, roughly 60% of the AP score variance could be explained at the teacher and school levels. In particular, teachers’ perceived administrative support, self-efficacy, teaching experience, and elements of classroom instruction were related to student performance. Notably, teachers’ professional development participation—which has been a major focus of interventions—has a small, mixed impact on student achievement. Conclusion The identified levers for improving student achievement provide a strong rationale for the continued efforts of policymakers to improve school environments and to support science teachers, with the ultimate goal of improving student learning to help all students to be prepared for college and ready for their future careers.

Publisher

SAGE Publications

Subject

Education

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3