Quantification of the Joint Effect of Wheel Load and Tire Inflation Pressure on Pavement Response

Author:

Prozzi Jorge A.1,Luo Rong2

Affiliation:

1. ECJ Suite 6.112, Department of Civil Engineering, University of Texas at Austin, 1 University Station C1761, Austin, TX 78712-0278.

2. ECJ Suite 6.806, Department of Civil Engineering, University of Texas at Austin, 1 University Station C1761, Austin, TX 78712-0278.

Abstract

Most pavement design and analysis procedures predict performance on the basis of expected pavement damage under traffic loads expected during design life. Some failure criteria are primarily dependent on wheel loads and almost independent of contact stresses. Others are primarily dependent on normal and shear stresses, not on load magnitude. Wheel load is used as a proxy for tire pressure to account for the effect of contact stresses indirectly. In most pavement design methods, tire–pavement contact stress is assumed to be equal to tire inflation pressure and to be uniformly distributed over a circular area. A methodology that explicitly accounts for the effect of tire inflation pressures and the corresponding contact stresses on pavement response is not available. In this research, pavement responses of typical pavement structures under the combined actions of variable wheel loads and tire pressures were evaluated. A multilayer, linear–elastic computer program was used to estimate three critical pavement responses: longitudinal and transverse tensile strains in asphalt and compressive strains in the subgrade. The differences of the strains estimated by the two models were statistically analyzed to quantify the effect of the assumption of uniform stress over a circular shape. The traditional model proved to be reliable to estimate compressive strains in the subgrade layer. The tensile strains in the asphalt layer under actual contact stress, however, were quite different from those under uniform constant stress. Contrary to initial expectation, for the general case, the assumption of uniform stresses is a conservative approach.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference12 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3