Predictions of three-dimensional contact stresses of a radial truck tire under different driving modes

Author:

Tang Xu1,Xie Jun1ORCID,Xie Hao1,Zhang Haijun1

Affiliation:

1. School of Traffic and Transportation Engineering, Changsha University of Science & Technology, Changsha, China

Abstract

In pavement design, vehicle load is typically simplified as vertical circular uniform loading. Due to the vehicle dynamic effect and deformation of a tire, non-uniform three-dimensional contact stresses are produced at the contact interface between the tire and pavement under different driving modes. For this paper, an 11R22.5 truck radial tire was selected. Considering the geometric nonlinearity and large deformation of the tire and nonlinear characteristics of tire-pavement contact, the Neo-Hookean and Rebar models are used to simulate the hyperelastic rubber material and rubber-cord composite material, respectively. The three-dimensional contact stress distribution under static, free rolling, acceleration, braking, and cornering modes was simulated and analyzed. The results show that inflation pressure, axle load, and friction coefficient of the tire significantly affect the three-dimensional contact stress distribution. Further, three-dimensional stresses are non-uniformly distributed, rather than in the traditional simplified circular uniform load. The three-dimensional stress distribution of tire-pavement in different driving modes is also significantly different. The vertical and lateral stresses in the state of cornering are the largest, the longitudinal stress in the state of braking is the largest as well. The research results provide reference for future pavement design and pavement damage analysis.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3