Use of Real-Time Traffic and Signal Timing Data in Modeling Occupant Injury Severity at Signalized Intersections

Author:

Kidando Emmanuel1,Kitali Angela E.2ORCID,Kutela Boniphace3ORCID,Karaer Alican4ORCID,Ghorbanzadeh Mahyar4ORCID,Koloushani Mohammadreza4ORCID,Ozguven Eren E.4

Affiliation:

1. Department of Civil and Environmental Engineering, Cleveland State University, Cleveland, OH

2. Department of Civil and Environmental Engineering, Florida International University, Miami, FL

3. Texas A&M Transportation Institute, Bryan, TX

4. Department of Civil & Environmental Engineering, FAMU & FSU College of Engineering, Tallahassee, Florida, USA

Abstract

This study explored the use of real-time traffic events and signal timing data to determine the factors influencing the injury severity of vehicle occupants at intersections. The analysis was based on 3 years (2017–2019) of crash and high-resolution traffic data. The best fit regression was first identified by comparing the conventional regression model and logistic models with random effect. The logistic model with a heavy-tailed distribution random effect best fitted the data set, and it was used in the variable assessment. The model results revealed that about 13.6% of the unobserved heterogeneity comes from site-specific variations, which underlines the need to use the logistic model with a random effect. Among the real-time traffic events and signal-based variables, approach delay and platoon ratio significantly influenced the injury severity of vehicle occupants at 90% Bayesian credible interval. Additionally, the manner of a collision, occupant seat position, number of vehicles involved in a crash, gender, age, lighting condition, and day of the week significantly affected the vehicle occupant injury. The study findings are anticipated to provide valuable insights to transportation agencies for developing countermeasures to mitigate the crash severity risk proactively.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3