Attention-Based Residual Dilated Network for Traffic Accident Prediction

Author:

Zhang Ke1ORCID,Guo Yaming1

Affiliation:

1. Department of Civil Engineering, Tsinghua University, Beijing 100080, China

Abstract

Traffic accidents directly influence public safety and economic development; thus, the prevention of traffic accidents is of great importance in urban transportation. The accurate prediction of traffic accidents can assist traffic departments to better control and prevent accidents. Thus, this paper proposes a deep learning method named attention-based residual dilated network (ARDN), to extract essential information from multi-source datasets and enhance accident prediction accuracy. The method utilizes bidirectional long short-term memory to model sequential information and incorporates an attention mechanism to recalibrate weights. Furthermore, a dilated residual layer is adopted to capture long term information effectively. Feature encoding is also employed to incorporate natural language descriptions and point-of-interest data. Experimental evaluations of datasets collected from Austin and Houston demonstrate that ARDN outperforms a range of machine learning methods, such as logistic regression, gradient boosting, Xgboost, and deep learning methods. The ablation experiments further confirm the indispensability of each component in the proposed method.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FAMT: Fusion of Feature Attention Mechanisms and Multiscale Temporal Relationships for Traffic Accident Prediction;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3