Calibrated confidence learning for large-scale real-time crash and severity prediction

Author:

Islam Md RakibulORCID,Wang Dongdong,Abdel-Aty Mohamed

Abstract

AbstractReal-time crash and severity prediction is a complex task, and there is no existing framework to predict crash likelihood and severity together. Creating such a framework poses numerous challenges, particularly not independent and identically distributed (non-IID) data, large model sizes with high computational costs, missing data, sensitivity vs. false alarm rate (FAR) trade-offs, and real-world deployment strategies. This study introduces a novel modeling technique to address these challenges and develops a deployable real-world framework. We used extensive real-time traffic and weather data to develop a crash likelihood prediction modeling prototype, leveraging our preliminary work of spatial ensemble modeling. Next, we equipped this spatial ensemble model with local model regularization to calibrate model confidence training. The investigated regularizations include weight decay, label smoothing and knowledge distillation. Furthermore, post-calibration on model outputs was conducted to improve severity rating identification. We tested the framework to predict crashes and severity in real-time, categorizing crashes into four levels. Results were compared with benchmark models, real-world deployment mechanisms were explained, traffic safety improvement potential and sustainability aspects of the study were discussed. Modeling results demonstrated excellent performance, and fatal, severe, minor and PDO crash severities were predicted with 91.7%, 83.3%, 85.6%, and 87.7% sensitivity, respectively, and with very low FAR. Similarly, the viability of our model to predict different severity levels for specific crash types, i.e., all-crash types, rear-end crashes, and sideswipe/angle crashes, were examined, and it showed excellent performance. Our modeling technique showed great potential for reducing model size, lowering computational costs, improving sensitivity, and, most importantly, reducing FAR. Finally, the deployment strategy for the proposed crash and severity prediction technique is discussed, and its potential to predict crashes with severity levels in real-time will make a substantial contribution to tailoring specific strategies to prevent crashes.

Publisher

Springer Science and Business Media LLC

Reference82 articles.

1. WHO. Global Status Report On Road Safety 2018 https://www.who.int/publications/i/item/9789241565684 (2018).

2. Islam, M. R., Barua, S., Akter, S., Hadiuzzaman, M. & Haque, N. Impacts of nongeometric attributes on crash prediction at urban signalized intersections of developing countries. J. Transp. Saf. Secur. 12, 671–696 (2020).

3. Chen, S., Kuhn, M., Prettner, K. & Bloom, D. E. The global macroeconomic burden of road injuries: estimates and projections for 166 countries. Lancet Planet. Heal. 3, e390–e398 (2019).

4. WHO. Road Traffic Injuries. WHO WEBSITE https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries (2022).

5. FHWA. About Safety: Safety at FHWA https://highways.dot.gov/safety/about-safety (2022).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3