Reliability-Based Assessment of Potential Risk for Lane-Changing Maneuvers

Author:

Joo Yang-Jun1,Park Ho-Chul2,Kho Seung-Young13,Kim Dong-Kyu13

Affiliation:

1. Department of Civil and Environmental Engineering, Seoul National University, Gwanak-gu, Seoul, Republic of Korea

2. Department of Transportation Engineering, Myongji University, Cheoin-gu, Yongin, Kyunggi, Republic of Korea

3. Institute of Construction and Environmental Engineering, Seoul National University, Gwanak-gu, Seoul, Republic of Korea

Abstract

Despite the urgent need for continuous risk assessments during autonomous driving, achieving reliable assessment results is still challenging because of the unpredictable behaviors of adjacent human drivers and the resulting complexity. Such complexity increases particularly during lane changes because several vehicles need to interact with other vehicles. Therefore, this paper proposes a new framework to analyze lane-changing risk on freeways considering the forecastability in adjacent vehicles. Virtual lane-change scenarios are constructed based on historical maneuvers in adjacent vehicles, and the risk of potential lane change is evaluated through the safety evaluation result of the scenario. Adjacent vehicles’ future maneuvers are predicted using a multivariate Bayesian structural time series model, and the forecastability is estimated as the standard error of the predicted values. The failure probability of those lane-changing scenarios is obtained through the first-order reliability method, assuming that failure occurred when any time-to-collision value for adjacent vehicles was less than a threshold at the end of the lane change. This study tested two scenarios with three levels of uncertainty to show the effect of uncertainty on the level of risk. The results showed that the reduced uncertainty allowed a clearer distinction between risky situations. The proposed framework differentiates itself from existing methods by estimating higher risk in an adjacent vehicle’s more significant uncertainties. It is expected that the outcome of this study will be valuable in developing reliable lane-change strategies in autonomous driving.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3