Risk identification and prediction model for continuous‐lane‐change vehicles considering driving style
-
Published:2025-01
Issue:
Volume:259
Page:125292
-
ISSN:0957-4174
-
Container-title:Expert Systems with Applications
-
language:en
-
Short-container-title:Expert Systems with Applications
Author:
Hu Xinghua, Chen Shanzhi, Zhao Jiahao, Wang Ran, Liu WeiORCID
Reference35 articles.
1. Agrawal, A. K., & Chakraborty, G. (2021). On the use of acquisition function-based Bayesian optimization method to efficiently tune SVM hyperparameters for structural damage detection. Structural Control & Health Monitoring, 28(4), 21. Retrieved from ://WOS:000612198400001. doi:10.1002/stc.2693. 2. Ahmed, I., Karr, A., Rouphail, N. M., Chun, G., & Tanvir, S. (2019). Characterizing Lane Changes via Digitized Infrastructure and Low-Cost GPS. Transportation Research Record, 2673(8), 298-309. Retrieved from ://WOS:000487035700027. doi:10.1177/0361198119841277. 3. Ali, Y., Haque, M. M., & Zheng, Z. D. (2023). Assessing a Connected Environment's Safety Impact During Mandatory Lane-Changing: A Block Maxima Approach. IEEE Transactions on Intelligent Transportation Systems, 24(6), 6639-6649. Retrieved from ://WOS:000757869700001. doi:10.1109/tits.2022.3147668. 4. Bao, N., Capito, L., Yang, D. F., Carballo, A., Miyajima, C., & Takeda, K. (2022). Data-Driven Risk-Sensitive Control for Personalized Lane Change Maneuvers. IEEE Access, 10, 36397-36415. Retrieved from ://WOS:000784013000001. doi:10.1109/access.2022.3163267. 5. Bekerman, W., & Srivastava, M. (2021). Determining Decomposition Levels for Wavelet Denoising Using Sparsity Plot. IEEE Access, 9, 110582-110591. Retrieved from ://WOS:000684679600001. doi:10.1109/access.2021.3103497.
|
|